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Abstract 

 The DoD sets forth an objective to “employ an active cyber defense capability to 

prevent intrusions onto DoD networks and systems.”  Intrusion Detection Systems (IDS) 

are a critical part of network defense architectures, but their alerts can be difficult to 

manage.  This research applies Queuing Theory to the management of IDS alerts, seeking 

to answer how analysts and priority schemes effect alert processing performance.  To 

characterize the effect of these two variables on queue wait times, a MATLAB simulation 

was developed to allow parametric analysis under two scenarios. The first varies the 

number of analysts and the second varies the number of alert priority levels.  Results 

indicate that two analysts bring about drastic improvements (a 41% decrease) in queue 

wait times (from 116.1 to 49.8 minutes) compared to a single analyst, due to the reduced 

potential for bottlenecks, with diminishing returns thereafter.  In the second scenario, it 

was found that three priority levels are sufficient to realize the benefits of prioritization, 

and that a five level priority scheme did not result in shorter queue wait times for Priority 

1 alerts.  Queuing models offer an effective approach to make IDS resource decisions in 

keeping with DoD goals for Active Cyber Defense. 
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ALERTS WITH QUEUING THEORY 

 
 

I.  Introduction 

Background 

 
Active Cyber Defense 

 In the Department of Defense Strategy for Operating in Cyberspace (DSOC), 

signed in July 2011 by Secretary Robert Gates, the DoD sets forth five strategic 

initiatives aimed at bringing U.S. cyber defense capabilities to a level that reflects the 

nation’s reliance on cyberspace.  Strategic Initiative 2 states that the, “DoD will employ 

new defense operating concepts to protect DoD networks and systems.”  Two objectives 

under this initiative are to “employ an active cyber defense capability to prevent 

intrusions onto DoD networks and systems” and to develop “new defense operating 

concepts and computing architectures” (Dept of Defense Chief Information Officer, 

2010). 

 The DSOC describes active cyber defense, or ACD, as a “synchronized, real-time 

capability to discover, detect, analyze, and mitigate threats and vulnerabilities”.  The key 

idea behind ACD is that threat mitigation happens in cyber-relevant time.  Cyber-relevant 

is an intentionally ambiguous descriptor whose value varies depending on the battlespace 

being discussed.  It could be on the order of nanoseconds in the case of a CPU or seconds 

in the case of end-to-end SATCOM links.    
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 The DSOC also refers to the development of new defense operating concepts in 

cyberspace.  While the context of this statement refers to exploration of mobile media 

and cloud computing technology, this thesis will characterize the queuing of alerts 

generated by network intrusion detection systems and use this data to make 

recommendations about network operation center response options. 

Intrusion Detection Systems 

 Intrusion detection systems (IDS) cover a wide variety of capabilities and 

implementations.  An IDS can be used to detect any kind of undesirable traffic on a 

network.  An IDS provides the same kind of intrusion detection for a computer network 

as a burglar alarm provides for a house. Traditionally, IDS come in two flavors: network-

based IDS (NIDS) and host-based IDS (HIDS).  NIDS are placed at a network gateway or 

along choke points in the network topology to sift through network traffic at large and 

identify traffic that is malicious, against network policy, or has other undesirable 

characteristics.  HIDS are located at specific network nodes to provide specialized traffic 

monitoring (Blackwell, 2004).  When located at a PC, a HIDS might track central 

processing unit (CPU) activity or random access memory (RAM) consumption to identify 

anomalous behavior.  A HIDS could also be located at a node providing a specific 

network service, such as a file transfer protocol (FTP) server or an e-mail server.  When 

employed together, NIDS and HIDS can provide a powerful capability to detect 

undesirable activity on a computer network. 

 In simple terms, an IDS works by examining packets as they come across the 

network and comparing them to a bank of signatures stored within the device.  A 
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signature is a specially formatted block of text that tells the IDS what to look for in each 

packet it inspects.  If a packet matches the criteria contained within the signature, the 

device performs a preprogrammed action against the packet, such as dropping the packet 

or flagging it for tracking purposes.  The IDS usually generates an alert in a human-

readable format for the administrator.  The management of these alerts is the major topic 

of this thesis. 

 
Figure 1.  An example IDS rule or “signature”.  Each word sets the value for a 
configurable parameter, determined by the rule format.  This particular format is 
from the popular open source IDS called SNORT®. (Roesch & Green, 2014) 
 

 The set of signatures within an IDS is called its rule-set.  While there are 

numerous open and proprietary sources for rule-sets that will provide protection from an 

array of common and uncommon threats, the adoption of a rule-set must be done with 

care.  Each network administrator must carefully craft a rule-set that is specialized for 

their network.  Unlike antivirus definitions where a growing database is of little concern 

due to the discrete and slow arrival times of new files, IDS rule-sets can quickly become 

so large that they are no longer functional.  The first issue is one of processing speed and 

bandwidth.  As each packet enters the IDS it must be compared to every signature in the 

rule-set in real-time.  For example, an in-line IDS residing on a 10 Gbps network could 

receive anywhere from 800,000 to 15,000,000 packets per second at maximum 
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bandwidth consumption (Schudel).  Therefore, the presence of unnecessary rules can 

quickly overwhelm the IDS processors and create a network logjam.  The second issue is 

that rule-sets that are not focused enough will generate too many alerts and/or false 

positives.  It is the goal of the network administrator to craft a rule-set that permits the 

free flow of legitimate network traffic and minimizes false positives, while still correctly 

identifying all malicious or undesirable traffic. 

Problem Statement 

 The numerous types and volume of alerts generated by network IDS drive the 

need for a disciplined approach in characterizing the flow of alerts to the network 

administrators dashboard, so that they can be effectively triaged, analyzed, and used to 

implement defensive actions to keep the network safe and operational. 

Research Focus 

 The focus of this research is to characterize the flow of alerts generated by any 

number of IDS devices within a network.  The specific device that an alert stems from is 

irrelevant from the analyst perspective.  All the data needed to properly respond to the 

alert is contained within the alert message itself.  Therefore, all alerts generated across all 

IDS residing on the network can flow into a single queue, from which network analysts 

pull alerts.  This is a different approach to today’s common practice, which is for alerts to 

be dumped periodically into a log file, which may not be examined by an administrator or 

analyst for hours or days. 
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 Understanding the nature of alert flows allows network administrators to make 

decisions about how many analysts to employ within a network operations center and 

how alerts should be prioritized in order to ensure alerts are analyzed while they are still 

relevant to the defense of the network. 

Investigative Questions 

 The key variables associated with alert queuing are the number of analysts 

servicing alerts, how often alerts arrive into the queue, how long each analyst takes to 

service an alert, and how many priority levels will be assigned to alerts when configuring 

the IDS rule-set.  

 The core investigative question addressed in this thesis is, given varying amounts 

of traffic density, how does the queuing system performance respond to varying numbers 

of analysts and priority levels? 

Methodology Overview 

 The methodology used in this thesis is a quantitative stochastic simulation and 

sensitivity analysis using a validated MATLAB model based in Queuing Theory.  This 

simulation will be used to characterize system performance and generate data for making 

decisions about network operations and resourcing. 

Hypothesis 

 The addition of more analysts, regardless of the other system variables, will most 

certainly result in reduced waiting time for alerts.  Obviously, however, unlimited 
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resourcing is not practical.  So the real question will be, are the system performance gains 

from the addition of analysts worth the additional resource investment? 

 When it comes to the number of priority levels, it is expected that giving all alerts 

equal priority will not lead to ideal system performance, as there are some rare signatures 

that may trigger catastrophic events.  These should always be dealt with first, which is 

not feasible in a no-priority system.  At the other extreme, too many priority levels may 

add unnecessary complexity with little to gain in terms of performance. 

Assumptions/Limitations 

 As with all models, it is never possible to completely replicate real world 

conditions. Therefore, care must be taken to try and distill from the infinite pool of 

variables only those factors that are most important to the phenomenon at hand.  More 

detailed assumptions relating to the specific queuing theory model of this thesis are listed 

in Chapter III.  Predominately, the conclusions are limited by a lack of empirical data 

regarding arrival rate and service rate distributions for IDS alerts. 

Implications 

 As the DoD transitions toward a posture of Active Cyber Defense, the 

incorporation of more active network sensors that deliver real-time status updates and 

alerts to network operators is likely to grow.  As these devices become more prolific 

across the network, the burgeoning data flow could easily overload administrators. 
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 This work attempts to address part of that problem by characterizing the flow of 

alerts from IDS devices and managing the associated variables such that network 

operators can take timely action in defense of the DoD and Air Force network. 

Organization of Thesis 

 The remainder of this paper is organized as follows.  Chapter 2, Literature 

Review, discusses common methods of analyzing IDS alerts today, lays out the basic 

concepts and terminology of Queuing Theory, introduces Little’s Law and the analytical 

equations used in Chapter 3, and discusses some foundations from similar research.  

Chapter 3, Methodology, describes the research method applied and validates the queuing 

theory model by comparing sample simulation results to their analytical counterparts.  

Chapter 4, Analysis and Results, describes two different scenarios and interprets the 

modeling results in the context of network operations.  Chapter 5, Conclusions and 

Recommendations, summarizes the research results, discusses limitations of the research 

and potential avenues for future work, and makes recommendations about applying the 

work to Department of Defense active cyber defense objectives. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to review current handling methods and research 

for network IDS, foundational theory and common practices that will be used to support 

the investigative questions and methodology in this thesis, and to discuss the useful 

findings of similar research efforts that this paper will reference or incorporate. 

Current Techniques for IDS Alert Management 

 While IDS are widely used in a variety of networks, there are still common 

problems administrators face in deploying them effectively. The major problems include: 

• Alert Flooding – unusually high traffic volume or poorly written rule-sets (which 
generate excessive false positives) can lead to extremely high volumes of IDS 
alerts.  For large networks, hundreds of thousands of alerts per day can fill up 
administrator logs (Meyer).  Additionally, known network attack vectors exist that 
allows malicious actors to carry out what is effectively a denial of service attack 
against IDS systems by flooding logs with useless alerts  (Tedesco & Aickelin) 

• Limited Scope of Information – IDS generate alerts from packet-level data.  
Therefore, they may not have enough information to report on complex protocol 
communications or shed light on malicious network activity that spans protocols 
or networking devices (Blackwell, 2004) 

• False Negatives – even when signatures are written with due diligence, it is 
impossible for a network administrator to foresee every possible attack vector or 
weakness in a network, especially those that could stem from well-resourced or 
creative adversaries.  This can create gaps of “false negatives” in the IDS, where 
malicious traffic passes through undetected because no signature exists to 
compare it against. (Meyer, 2008) 

• Problems with Anomaly-Type Signatures - anomaly signatures are useful 
because they do not survey individual packets, but instead look at broad trends in 
network activity across a variety of ports and protocols to determine if something 
is occurring that is out of the ordinary.  However, these signatures depend on 
having pristine real-world network data from which to create a normalized base to 
compare against.  The problem with using real-world data is one can never be 
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certain that the data being used to establish the base is not itself contaminated 
with attacks. 

 The bulk of research efforts pertaining to IDS and alert management have focused 

on addressing the problems listed above, improving the ability of IDS to correctly detect 

malicious traffic, and to reduce the number of alerts produced by the devices to a 

manageable volume.  A sampling of the techniques developed to address these issues is 

shown below: 

• Alert Correlation and Abstraction – alert correlation and abstraction is 
succinctly defined as a “multi-step process that receives alerts from one or more 
intrusion detection systems as input and produces a high-level description of the 
malicious activity on the network” (Aziz, 2006).  In other words, alerts are 
compared and lumped into related groups, then compiled into a more human-
friendly format for presentation to the user. (Valeur, Vigna, Kruegel, & 
Kemmerer, 2004) 

• Parsing Programs – some research has implemented the use of scripts that 
search the fields of an archive of alerts to delete duplicates and/or alerts with field 
values that are likely to be false positives (Meyer, 2008).  The result is a list of 
alerts that are more likely to contain alerts that contain information about truly 
threatening traffic.  

• Alert Correlation with Known Network Vulnerabilities – investigations have 
been made into cross-referencing IDS alerts with a database of known network 
vulnerabilities, to increase the confidence that alerts presented to administrators 
contain relevant information.  (Raulerson, Hopkinson, & Laviers, 2014)  (Morin, 
Me, Debar, & Ducasse) 

 Once the volume of alerts have been reduced by techniques like those described 

above, they are usually dumped into a log file (Meyer, 2008).  The administrator or 

network analysts can then go back and review the log file. This approach has the 

advantage of allowing an analyst with a trained eye to survey a large number of historical 

alerts in search of unusual patterns.  However, the main problem is that this analysis is 

not conducted in real-time, and does not meet the intent of an “active” cyber defense.  
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While useful for reviewing network activity over a large chunk of operating time (an 

entire day or weeks’ worth of activity), it is not appropriate for protecting the network in 

real-time, especially while an attack is underway or during a time of heightened defense 

posture.  Since the status of a network can change very quickly, it may be too late if an 

analyst receives an alert even more than a few minutes after it is generated.  For these 

times, what is needed is a disciplined way of triaging alerts and presenting them to 

network analysts so they can be assessed while they are still relevant to the defense of the 

network.  In pursuit of a method to do just that, Queuing Theory is discussed in the 

following section as a potential solution. 

Queuing Theory Primer 

Practical Uses 

 Queuing Theory is the mathematical study of waiting in lines.  The primary goals 

of queuing theory models are to determine the expected length of a line, or queue, and the 

average amount of time a customer can expect to spend in the system.  The term "system" 

refers to the collective sum of those objects waiting in the queue plus those currently 

being served.  To give a commonplace example, consider the customer experience at a 

supermarket checkout counter.  The customers enter the store, select items for purchase, 

and then proceed to the checkout area.  Upon arrival, the customers selects an available 

register and stands in line.  Each customer can expect to wait in line for some average 

amount of time before reaching the cashier.  Once at the cashier, the customer will again 

wait some amount of time while items are scanned and payment is taken. When payment 

is received, the customer exits the store with their goods and the process is complete. 
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 Other applications for queuing theory include: 

• Bank teller service lines (Cogdill & Monticino, 2007) 
• Telecommunications traffic (Rasch, 1963) 
• Traffic intersections 
• Telephone customer service centers 
• CPU task assignment 
• Amusement park rides 

 Clearly, queuing theory can be a valuable tool for reducing wait times and 

increasing throughput in a variety of systems.  The implications for reduced waste, 

increased profit, customer satisfaction, and general system improvement continue to drive 

research into increasingly complex areas of queuing theory and queuing networks. 

 In the context of the IDS alert management problem, queuing theory offers an 

excellent framework for building an executable model to demonstrate the generation, 

flow, and handling of IDS alerts within a network. 

Queuing System Characteristics 

 A queuing system is defined by six independent, or characterizing, variables: 

• A source or population – consists of all potential objects (customers, tasks, 
etc.) 

• An arrival process or distribution – how frequently objects  enter the queue 
• A queue or queues – where objects wait to be assigned to a server 
• One or more servers – the person or machine that services objects 
• A service time distribution – how long a server takes to do its task 
• A service discipline – an algorithm dictating how objects are pulled from the 

queue 

The relations of these variables are shown in Figure 2. 
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Figure 2. A basic queuing theory diagram calling out the six defining characteristics 
of a system (Reed, 1995). 
 The popular Kendall Notation is often used to quickly describe the characteristics 

of a given queuing system.  A generalized Kendall Notation is of the form,  

A/S/m/B/K/SD 

where,  

 A is the arrival distribution,  

 S is the service time distribution,  

 m is the number of servers,  

 B is the number of “buffer” spaces or the capacity of the queuing area,  

 K is the population size, and  

 SD is the service discipline in use.   

 Many times, only the first three positions of Kendall Notation are used.  In these 

cases, it can be assumed the buffer capacity and population are infinite and the service 

discipline is First Come, First Served (FCFS) or First In, First Out (FIFO). A common 
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simple model is M/M/1, where M denotes memoryless (i.e. Markovian) distributions, 

such as exponential, for inter-arrival and service times, and the system has 1 server. 

 There are numerous types of distributions, queue/server setups, and service 

disciplines that can be used to define a queuing system.  The variables of particular 

interest in this paper are the arrival distribution, service distribution, number of servers, 

and the service discipline. 

 Once a system is characterized, the values of four dependent variables can be 

determined: 

• L = Total number of objects in the system 
o Lq = Number of objects waiting in the queue(s) 
o Ls = Number of objects receiving service 

• W = Amount of time an object spends in the system 
o Wq = Time spent waiting in the queue 
o Ws = Time spent receiving service 

 Data concerning jobs in the system can provide information about system 

capacity and whether the system is overcrowded or underutilized.  Similarly, data 

regarding wait times and service times can be useful metrics for determining system 

efficiency and identifying process bottlenecks. 

 It is possible, for simple queuing systems, to analytically develop a set of 

governing equations which determine the values for the dependent variables listed above.  

These equations will be introduced in the next section  and demonstrated in Chapter III to 

prove the accuracy and calibration of the alert queuing model under simple conditions.  

For the alert management problem explored in Chapter IV, however, complexity makes 

the development of analytical solutions infeasible. Therefore, a model provides a 
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mechanism to gather empirical data and provide insight beyond the reach of analytical 

closed-form solutions. 

Little’s Law and Queuing Theory Analytical Equations 

 A foundational law for solving queuing problems analytically is Little’s Law, first 

proved by John D.C. Little in 1961.  It states, 

The time average number of customers in a queuing system, L, is equal to the rate 
at which customers arrive and enter the system, λ, times the average sojourn time 
of a customer, W (Sigman) 

Or simply, 

𝐿 = 𝜆𝑊 

 Using Little’s law as a foundation, governing equations can be derived for many 

simple queuing systems.  Table 1 shows the governing equations for M/M/1, M/M/c, and 

M/M/1 with k-Priority queuing systems. 

 For an M/M/c system where multiple servers are utilized, another variable is 

introduced, ρ0,0, which is the probability that at any given time there are zero alerts 

waiting in the queue and zero busy analysts.  This value is used in computing the average 

length of the queue, Lq, from which the other variables are determined easily using 

Little’s Law. 

 When a First Come, First Served service discipline with priority is introduced 

(M/M/1 w/k-Priority in Table 1) it is necessary to calculate 𝑅�, the mean residual service 

time in the system.  Alerts of lesser priority will have to wait for all alerts of higher 

priority to clear the system before being serviced.  The mean residual service time is the 

sum of this extra waiting time for lower classes introduced by the prioritized service 
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discipline. Once 𝑅� is calculated, the simplest approach is the calculate how long alerts of 

each priority will wait in the queue, 𝑊𝑞
𝐾 .  Determining the values of the other variables is 

then straightforward. 

 It was once thought that analytically determining the dependent variables for an 

M/M/c w/k-Priority system was not feasible, because mean residual service times would 

become too difficult to determine if each k priority level had a different mean service 

time (Virtamo).  However, a 2005 paper by Harchol-Balter et al introduced Recursive 

Dimensionality Reduction (RDR) as an analytical approach to analyze multi-server 

queuing systems with multiple priority classes (Harchol-Balter, Osogami, Scheller-Wolf, 

& Wierman, 2005) RDR was shown to be accurate to modeling within 2%.  However, the 

effectiveness of RDR was reduced with increasing numbers of servers and priority levels.  

Thus, the value of a dynamic queuing model that can handle varying service time 

parameters for differing numbers of servers and priority levels becomes apparent, since it 

is possible to yield results that can be too complex for analytical investigation. 
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Table 1. Governing equations for M/M/1, M/M/c, and M/M/1 with k-Priority 
queuing 

Variable M/M/1 M/M/c M/M/1 w/k-Priority 

L = 𝜆𝑊 = 𝐿𝑞 +
𝜆
𝜇

 
𝐿 = 𝐿𝑞 +

𝜆1
𝜇

+ ⋯+
𝜆𝑘
𝜇

 

𝐿𝑘 = 𝐿𝑞𝑘 +
𝜆𝑘
𝜇

 

Lq = 𝜆𝑊𝑞 = �𝜌0,0�

⎣
⎢
⎢
⎡ �𝜆𝜇�

𝑐+1

(𝑐 − 1)! �𝐶 − 𝜆
𝜇�

2

⎦
⎥
⎥
⎤
 

𝐿𝑞 = 𝐿𝑞1 + ⋯+ 𝐿𝑞𝑘  
𝐿𝑞𝑘 = 𝜆𝑘𝑊𝑞

𝑘 

W =
1

𝜇 − 𝜆
 =

𝐿
𝜆

 
𝑊 =

𝜆1𝑊1 + ⋯+ 𝜆𝑘𝑊𝑘

𝜆1 + ⋯+ 𝜆𝑘
 

𝑊𝐾 = 𝑊𝑞
𝑘 +

1
𝜇

 

Wq = 𝑊 −
1
𝜇

 =
𝐿𝑞
𝜆

 
𝑊𝑞 =

𝜆1𝑊𝑞
1 + ⋯+ 𝜆𝑘𝑊𝑞

𝑘

𝜆1 + ⋯+ 𝜆𝑘
 

𝑊𝑞
𝐾 =

𝑅�
(1 − 𝜌1 − ⋯− 𝜌𝑘−1)(1 − 𝜌1 −⋯− 𝜌𝑘)

 

 

𝜌0,0 --- =
1

�𝜆𝜇�
𝑐
�1
𝑐!� �

1
1 − 𝜌� + ∑ �𝜆𝜇�

𝑟
�1
𝑟!�

𝑟=𝑐−1
𝑟=0

 --- 

𝑅� --- --- =
1
2
�𝜆𝑘𝑆𝑘2���
𝑘

𝑘=1

 

𝑆𝑘2��� --- --- =
𝑛!
𝜇2

 

Foundations from Similar Research 

Single Queue, Multiple Servers 

 The queuing model used in this research relies on the premise that a single queue 

feeding multiple servers operates more efficiently (i.e. with reduced sojourn time through 

the system and thus less wait time in the queue) than multiple servers each fed by their 

own queue. 
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 Figure 3, adapted from a publicly available lecture from University of Illinois 

(Reed, 1995), compares the mean response time, or system transit time W, of multiple 

servers each fed by their own queue (m M/M/1 queues shown in red) versus that of 

multiple servers fed by a single queue (1 M/M/m, or 1 M/M/c, queue shown in green).  

For all server quantities greater than one, a single M/M/c queue shows improved 

performance over multiple M/M/1 queues.  At ten servers, the M/M/c queue processes 

objects through the queue approximately 70% faster than multiple M/M/1 queues. 

 

Figure 3. Comparison of the mean response time, or system transit time W,  for 
multiple servers fed by multiple queues (shown in red) versus multiple servers fed 
by a single queue (shown in green) (Reed, 1995). 
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Summary 

This chapter presented the current techniques for IDS alert management and the 

research being conducted to improve these systems.  It also discussed the basics of 

Queuing Theory, which is a simple but powerful tool that can be applied to a variety of 

situations where objects or tasks must wait to be serviced.  The analytical mathematics 

can become difficult with increasing model complexity, but can be calculated for simple 

systems to a sufficient level for cross-checking results from computer simulations.  The 

queuing model written for this research relies on the principal that a single queue feeding 

multiple servers is more efficient than multiple servers, each with its own queue.  The 

next section will discuss the methodology for this research and demonstrate the validity 

of the MATLAB model. 
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is to describe the research approach and modeling 

procedures.  First a brief overview of the methodology will be conducted, followed by a 

discussion of the relevant variables.  Next, the custom queue model used will be 

described and then data collected from the model will be compared against theoretical 

values to prove model accuracy and calibration.  Finally, significant underlying 

assumptions to the experimental process will be discussed. 

Overview of Research Methodology 

 The methodology employed was a computer based simulation model written by 

the author within the MATLAB computing environment (version R2013a).  Since the 

primary objective of the research was to characterize Alert queuing for Intrusion 

Detection Systems, the model was founded in Queuing Theory principles as presented in 

the Queuing Theory primer in Chapter II.  This led to the creation of a flexible model 

which was used to generate data for parametric analysis in determining the sensitivity of 

the system to changes in the relevant Queuing Theory variables. 

Description of Dependent and Independent Variables 

 In order to provide flexibility, the model allows for several user-defined variables. 

 The duration of the simulation is determined by the number of arrivals of the 

lowest level priority alert, which the user defines.  The model will continue to run until 

that number of arrivals is reached. 
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 Users must also define other key Queuing Theory parameters including the 

number servers (Analysts in this case), the number of Alert priority levels, the inter-

arrival rate for each priority level (1/λ), and the service time parameter for each priority 

level (1/μ).  In the version used in this paper, inter-arrival and service time distributions 

are limited to the exponential form. 

Experimental Design 

 This research uses a “validate and extend” approach to ensure the modeling 

results on which analysis is conducted are reliable.  The first step was to run the 

simulation under conditions that were easily calculated with the analytical closed-form 

equations introduced in Chapter 2.  The computer-based modeling results were then 

compared to these analytical equations to ensure the program was producing accurate 

results.  The results of these calibration runs are presented later in this chapter. 

 Once the model was validated, the parameter values were extended beyond the 

reach of analytical equations, to generate empirical data for parametric analysis.  The 

analysis was used to characterize the effect of dependent variables on overall system 

performance and finally to draw practical conclusions about applications to network 

operations.  

Experimental Tasks 

1) Design and write a MATLAB model.   

2) Develop the set of analytical equations. 

3) Validate the MATLAB model. 

4) Make parameter assumptions for Scenario 1. 
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5) Run Scenario 1. 

6) Analyze the results from Scenario 1 

7) Make parameter assumptions for Scenario 2. 

8) Run Scenario 2. 

9) Analyze the results from Scenario 2. 

Description of Analysis 

 Analysis was divided into two phases.  The first phase compared model output 

under simple conditions to results predicted by analytical equations.  This demonstrated 

the model was accurate and calibrated.  This step was necessary to provide assurance that 

future data output based on more complex conditions, which cannot be checked 

analytically, was reliable. 

 The second phase runs the model under more complex, realistic conditions.  The 

model is run with careful variation in parameters to generate 3D surface plots that 

demonstrate the sensitivity of the system.  The second phase of analysis was divided into 

two Scenarios that will be discussed in Chapter 4. 

Construction of Model 

 The complete MATLAB code for the model used in this research is included in 

the Appendix, but a brief description of how the model works is provided.   The model 

uses object-oriented programming techniques to generate a functioning queue and set of 

servers (or analysts).  A main script orchestrates alert arrivals, queue management, 

analyst tasking, and metric/statistical logging.  The main script allows the user to define 

the total number of alert arrivals (which equates to the length of the simulation), the 
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number of analysts, the number of priority levels, and to define an arrival rate and service 

rate for each priority level. 

 An alert class is used to construct alert objects, each of which has 4 properties 

associated with it: the alert priority level (priority), the time it arrived into the queue 

(time_arrived), the time it was polled (or pulled) from the queue (time_polled), 

and the time it reached service completion and exited the system (time_finished). 

 A queue class is used to construct the queue object(s).  Queue objects have 

properties for type, which is always of type alert objects in this research, and individual 

elements, which are the queue locations that each alert is placed into. 

 Finally, there is an analyst class, which creates analyst objects that have a 

Boolean property of being available or busy (available) and an alert property, 

which is where they store the current alert they are servicing. 

 Figure 4 is a class diagram to show how the various classes interact with the main 

script to produce a complete queuing theory model. 
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Figure 4. Class diagram depicting how the Main Script of the model orchestrates 
between the three classes to create a functioning queuing system. 
 

Validation of Model  

 For assurance that the model generates reliable and accurate data, model output 

was compared with Queuing Theory analytical results for a set of simple parameters. 

 Before proceeding, recall from Chapter I that Kendall notation of the form 

A/S/m/B/K/SD is the standardized method of describing queuing systems.  Many times, 

only the first three positions of Kendall Notation are used.  In these cases, it can be 

assumed the buffer capacity and population are infinite and the service discipline is First 

Come, First Served (FCFS).  Thus, M/M/1 = M/M/1/∞/∞/FCFS. 



 

24 

M/M/1Analytical Results 

 Perhaps the simplest Queuing Theory system is the M/M/1, where M represents 

an exponential distribution.  Therefore, in an M/M/1 system Alert inter-arrivals and 

service times are based on an exponential distribution and there is only one server, or 

Analyst. 

 For comparison to model results, assume an arrival rate of  λ = 10 alerts per hour 

(1/λ = 1/10, or an alert arrives on average every 6 minutes) and a service rate of µ=12 

alerts per hour (1/μ = 1/12, or one alert is serviced on average every 5 minutes).  

Therefore, the average time each alert spends in the system (sitting in the queue plus the 

time it takes to be serviced), W, is 

𝑾 =
𝟏

µ − 𝝀
=

𝟏
𝟏𝟐 − 𝟏𝟎

=
𝟏
𝟐

 𝒐𝒓 .𝟓 𝒉𝒐𝒖𝒓𝒔 (𝟑𝟎 𝒎𝒊𝒏𝒔) 

the average time each alert sits in the queue before getting serviced, Wq, is 

𝑾𝒒 = 𝑾− 𝟏
µ

= 𝟏
𝟐
− 𝟏

𝟏𝟐
= 𝟓

𝟏𝟐
 𝒐𝒓 .𝟒𝟏𝟕 𝒉𝒐𝒖𝒓𝒔 (25 mins) 

the average number of alerts in the system, L, is 

𝑳 = 𝝀𝑾 = (𝟏𝟎) �
𝟏
𝟐
� =

𝟏𝟎
𝟐

= 𝟓 𝒂𝒍𝒆𝒓𝒕𝒔 

and the average number of alerts in the queue, Lq, is 

𝑳𝒒 = 𝝀𝑾𝒒 = (𝟏𝟎) �
𝟓
𝟏𝟐
� =

𝟓𝟎
𝟏𝟐

= 𝟒.𝟏𝟔𝟕 𝒂𝒍𝒆𝒓𝒕𝒔 

M/M/1 Model Results 

 The data in Figure 5 shows convergence to theoretical values over a trial run of 

100,000 alert arrivals using the same values of λ=10 and µ=12.  The red reference lines 

represent the theoretical values. 
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 It should be noted queue size, Lq, and system size, L, throughout this analysis are 

based on a sampling of simulation time, anywhere from every 1,000 to 10,000 minutes 

depending on the complexity and total simulation time of the model.  Due to the varying 

arrival rates and priority levels in use, simulation time could expand to millions of time 

steps, with a separate array required for each priority level.  Continuous evaluation of the 

average queue and system size for every iteration of simulation time proved to be too 

computationally intense for the home PC to handle.   

 

Figure 5. Clockwise, the average Queue Size, System Size, System Wait Time, and 
Queue Wait Time output by the model for a simple M/M/1 system (λ=10, μ=12). 
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 At steady state, the model converges to the theoretical reference lines pictured.  

There is, however, a transient period where the average size and wait time values 

fluctuate drastically.  In order to negate the effects of the transient period when 

calculating model error, only the last 10% of the curve data points are used when 

calculating root-mean-squared (RMS) error. 

 The average values of the response variables as predicted by the model are 

compared to the theoretical values in Table 2.  The small RMS errors suggest the model 

is an excellent predictor of queue behavior for the M/M/1 case. 

 Table 2. Comparison of the average system dependent variable values output 
by the model compared to theoretical predictions, for an M/M/1 system with λ=10 
and μ=12. 

System Characteristic Model Steady State 
Theoretical 

Value 
RMS Error 

Lq 4.143 4.167 .0515 

L 4.976 5.000 .0521 

W 29.70 30.00 0.4617 

Wq 24.73 25.00 0.4313 

 

M/M/c Analytical Results 

 The next step to increase the complexity of the model is to allow any multiple 

analysts to pull alerts from the queue.  Arrival and service distributions remain in the 

exponential form. 

 To provide some values for comparison to the model output, assume λ = 3 alerts 

per hour (1/λ = 1/3, or an alert arrives on average every 20 minutes), µ=6 alerts per hour 
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(1/μ = 1/6, or an alert is serviced on average every 10 minutes), and c=3 (three Analysts 

are pulling alerts from the queue). 

 Therefore, using the M/M/c equations introduced in Chapter 1, ρ for the system is, 

𝜌 =
𝜆
𝑐𝜇

=
3

(3)(6)
=

3
18

=
1
6

 

and the probability that there are zero alerts waiting in the queue and zero busy analysts 

is, 

𝜌0,0 =
1

�𝜆𝜇�
𝑐
�1
𝑐!� �

1
1 − 𝜌� + ∑ �𝜆𝜇�

𝑟
�1
𝑟!�

𝑟=𝑐−1
𝑟=0

= 

=
1

�3
6�

3
�1

3!� �
1

1 − 1
6
� + �3

6�
0
�1

0!� + �3
6�

1
�1

1!� + �3
6�

2
�1

2!�

= .6060���� 

 So the predicted values for Lq, L, Wq, and W are 

𝑳𝒒 = �𝝆𝟎,𝟎� �
�𝝀𝝁�

𝒄+𝟏

(𝒄−𝟏)!�𝑪−𝝀𝝁�
𝟐� = (.𝟔𝟎𝟔𝟎����) �

�𝟑𝟔�
𝟑+𝟏

(𝟑−𝟏)!�𝟑−𝟑𝟔�
𝟐� =.𝟎𝟎𝟑𝟎 𝒂𝒍𝒆𝒓𝒕𝒔  

𝑳 = 𝑳𝒒 +
𝝀
𝝁

=.𝟎𝟎𝟑𝟎 +
𝟑
𝟔

=.𝟓𝟎𝟑𝟎 𝒂𝒍𝒆𝒓𝒕𝒔 

𝑾𝒒 =
𝑳𝒒
𝝀

=
.𝟎𝟎𝟑𝟎
𝟑

=.𝟎𝟎𝟏𝟎 𝒉𝒐𝒖𝒓𝒔 𝒐𝒓.𝟎𝟔𝟎𝟔 𝒎𝒊𝒏𝒔 

𝑾 =
𝑳
𝝀

=
.𝟓𝟎𝟑𝟎
𝟑

=.𝟏𝟔𝟕𝟕 𝒉𝒐𝒖𝒓𝒔 𝒐𝒓𝟏𝟎 𝒎𝒊𝒏𝒔 

M/M/c Model Results 

 Figure 6 displays data from a run of the model with λ=3, μ=6, and c=3 analysts.  

The values of the four response variables converge to the analytically predicted values, 

which are marked by the red reference lines.  Due to the relatively low density of the 
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system (ρ=1/6), convergence is not as complete as in the M/M/1 case above.  Still, the 

model output agrees nicely with theoretical values. 

 

Figure 6. For an M/M/3 system with λ=3 and μ=6, the model agrees with analytical 
predictions of the four response variables. 
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Table 3. Comparison of the average system dependent variable values output by the 
model compared to theoretical predictions, for an M/M/3 system with λ=3 and μ=6. 

System Characteristic 
Model Steady 

State 
Theoretical Value RMS Error 

Lq .0031 .0030 0.0001 

L .5031 .5030 0.0006 

W 10.05 10.00 0.0526 

Wq .0618 .0606 0.0016 

 

 

M/M/1 with Priority Analytical Results 

 Now the model will return to a single analyst, but multiple alert priority levels 

will be added.  To keep the calculations manageable, analytical results will be shown for 

two (2) priority levels, with λ2 = 3, λ1 = 2, μ = 12, and c = 1 where λ1 is high priority and 

λ2 is low. 

 From the M/M/1 with Priority equations in Chapter 1, the first thing that must be 

calculated is the second moment of the service distribution, 𝑆𝑘2,  

𝑆𝑘2��� =
𝑛!
𝜇2

=
2!

122
=

1
72

𝑜𝑟. 0139 

which is plugged into the mean residual service time parameter, 

𝑅� =
1
2
�𝜆𝑘𝑆𝑘2���
𝑘

𝑘=1

=
1
2
�(3) �

1
72
� + (2) �

1
72
�� = .0347 

The residual service time is used to estimate the average time spent in the queue for each 

priority level, 
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𝑊𝑞
1 =

𝑅�
1 − 𝜌2

=
. 0347

1 − 2
12

= .0417 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 2.500 𝑚𝑖𝑛𝑠 

𝑊𝑞
2 =

𝑅�
(1 − 𝜌2)(1 − 𝜌2 − 𝜌1)

=
. 0347

�1 − 2
12� �1 − 2

12 −
3

12�

= .0714 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 4.286 𝑚𝑖𝑛𝑠 

then, the average amount of time any alert spends in the queue (the system-wide queue 

wait time) is calculated using a weighted approach, 

𝑾𝒒 =
𝝀𝟐𝑾𝒒

𝟐 + 𝝀𝟏𝑾𝒒
𝟏

𝝀𝟐 + 𝝀𝟏
=

(𝟑)(𝟒.𝟐𝟖𝟔) + (𝟐)(𝟐.𝟓)
𝟑 + 𝟐

= 𝟑.𝟓𝟕𝟏 𝒎𝒊𝒏𝒔 

 System sojourn time, W, is calculated for each priority level by adding the 

expected time the alert will wait in the queue plus the average time the alert takes to be 

serviced, 

𝑊1 = 𝑊𝑞
1 +

1
𝜇

= .0417 + �
1

12
� = .1250 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 7.502 𝑚𝑖𝑛𝑠 

𝑊2 = 𝑊𝑞
2 +

1
𝜇

= .0714 + �
1

12
� = .1547 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 9.286 𝑚𝑖𝑛𝑠 

and similarly to Wq, 

𝑾 =
𝝀𝟐𝑾𝟐 + 𝝀𝟏𝑾𝟏

𝝀𝟐 + 𝝀𝟏
=

(𝟑)(𝟗.𝟐𝟖𝟔) + (𝟐)(𝟕.𝟓𝟎𝟐)
𝟑 + 𝟐

= 𝟖.𝟓𝟕𝟏 𝒎𝒊𝒏𝒔 

 Finding the queue size for each alert priority level requires only a quick 

application of Little’s Law, 

𝐿𝑞1 = 𝜆1𝑊𝑞
1 = (2). 0417) = .0833 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 1 𝑎𝑙𝑒𝑟𝑡𝑠 

𝐿𝑞2 = 𝜆2𝑊𝑞
2 = (3)(.0714) = .2143 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 2 𝑎𝑙𝑒𝑟𝑡𝑠 

And the overall queue size, Lq, regardless of priority is a simple addition, 
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𝑳𝒒 = 𝑳𝒒𝟐 + 𝑳𝒒𝟏 =.𝟐𝟏𝟒𝟑+.𝟎𝟖𝟑𝟑 =.𝟐𝟗𝟕𝟔 𝒂𝒍𝒆𝒓𝒕𝒔 

 The system size, L, for each alert priority level is simply the number of alerts of 

that priority in the queue plus the average arrival rate, 

𝐿1 = 𝐿𝑞1 +
𝜆1
𝜇

= .0833 +
2

12
= .2500 𝑎𝑙𝑒𝑟𝑡𝑠 

𝐿2 = 𝐿𝑞2 +
𝜆2
𝜇

= .2143 +
3

12
= .4643 𝑎𝑙𝑒𝑟𝑡𝑠 

Making the overall system size, 

𝑳 = 𝑳𝒒 +
𝟑
𝟏𝟐

+
𝟐
𝟏𝟐

=.𝟐𝟗𝟕𝟔 +
𝟑
𝟏𝟐

+
𝟐
𝟏𝟐

=.𝟕𝟏𝟒𝟑 𝒂𝒍𝒆𝒓𝒕𝒔 

M/M/1 with Priority Model Results 

 When using multiple priority levels, each level had its own value for Lq, L, Wq, 

and W but there was also a system value that looked at the characterization of the system 

as a whole without regard for priority levels.  Figure 7 below shows the convergence of 

the model to the theoretical average values predicted above for each priority level as well 

as for the system as whole, which is shown in black.  Red reference lines on the charts 

represent the closed-form analytical predictions. 

 One may notice that the Priority 1 and System curves do not extend the full length 

of the X axis in the Wq and W plots, whereas the Priority 2 curve does.  This is simply a 

result of the way the model handles alert arrivals of differing priority levels.  Since the 

total simulation length is determined based on a given number of arrivals for the lowest 

priority (in the case, Priority 2), the number of higher priority arrivals will vary based on 

its arrival rate.  Since higher priority alerts generally arrive less frequently than low ones, 
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there will be less total high priority arrivals, but they will still enter the system throughout 

the entire simulated time span. 

 

Figure 7. Model output for the four response variables for an M/M/1 with 2 Priority 
system.  Red reference lines represent values predicted by analytical equations. 
 

  
Table 4 compares the average values determined by the model to the theoretical values.  

For system-wide variables, error appears to be slightly less than for individual priority 

levels. As was seen for the M/M/3 system above, the higher error for the individual 

priority levels is influenced by the lower traffic density. 
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Table 4. Comparison of the model and theoretical dependent variable average 
values, both overall and for each priority level, in an M/M/1 with 2 priority level 
system. 

System Characteristic Model Steady State Theoretical Value RMS Error 

Lq .2976 .2976 0.0009 

𝐿𝑞2  .2203 .2143 0.0067 

𝐿𝑞1  .0774 .0833 0.0059 

L .7123 .7143 0.0012 

𝐿2 .4703 .4643 0.0068 

𝐿1 .2420 .2500 0.0078 

W 8.570 8.571 0.0054 

𝑊2 9.374 9.286 0.1014 

𝑊1 7.325 7.500 0.1732 

Wq 3.592 3.571 0.0107 

𝑊𝑞
2 4.391 4.286 0.1174 

𝑊𝑞
1 2.341 2.500 0.1578 

 

Assumptions  

 Many assumptions were made in the design and execution of the MATLAB 

queuing theory model.  Some of the major assumptions were: 

 - All alerts that reach the queue are valid alerts and not the results of false positive 

triggers.  All network traffic and detection activity that happens “upstream” from the 
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system is not included in the model, which starts at the alert queue and ends after the 

analyst services the alert.  

 - The network analyst is well-trained and has already traversed the steepest 

portion of the learning curve.  In other words, the analyst is proficient at servicing alerts 

and spends only as much time as necessary on each one. 

 - In multiple server (i.e. multiple analyst) scenarios, each analyst has the same 

skill proficiency.  In the real world, some analysts will have more advanced skills, so 

service times may vary drastically from analyst to analyst and may not be solely a 

function of the type of alert. 

 - There is assumed to be no collaboration between analysts.  For example, the 

findings of one analyst does not affect the work of the others.  Even though the alerts in 

service could have related root causes.   

 - The model does not allow alerts to be preempted.  Alerts of the highest priority 

must wait at the front of the queue until an analyst finishes working on a lower priority 

alert.  In the real world, a lower priority alert may be set aside when an exceptionally 

critical one arrives. 

Summary 

The method used in this research begins with validating the MATLAB model by 

comparing its results under simple conditions to the results predicted by closed-form 

analytical equations.  Once the model is verified, its parameters are extended to simulate 

conditions beyond the reach of analytical equations.  The results of these extensions and 

their interpretation are presented in the following chapter. 
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IV.  Analysis and Results 

Chapter Overview 

 This chapter introduces the modeling results for two different trial scenarios.  In 

each scenario, 3D surface plots are generated to determine the sensitivity of the system to 

three key parameters: traffic density, number of analysts, and number of priority levels. 

The same set of traffic densities were used in both Scenario 1 and 2, ranging from lighter 

to heavier loads to see how the system would respond under varying amounts of stress.  

In Scenario 1 the model was executed across all traffic loads while varying the number of 

analysts from one (1) to three (3).  In Scenario 2, the results of Scenario 1 under the three 

analyst case were extended using the same set of traffic loads, but with one (1), three (3), 

and five (5) priority levels. 

Scenario 1: Varying the Number of Analysts 

 For the first scenario, the number of analysts was varied between one (1) , two 

(2), and (3) analysts across a range of traffic loads from lighter to heavier to determine 

the effect on average queue size (Lq), average system size (L), average queue wait time 

(Wq), and average system sojourn time (W).  All values for alert arrival rate (λ) and alert 

service rate (μ) followed an exponential distribution. 

Scenario1: Assumptions 

 For Scenario 1, the number of priority levels was fixed at three (one through 

three, with priority level one being high and priority three low) to make it easier to 

identify the sensitivity of the system to varying the number of analysts only, across a 
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range of traffic loads.  The values for alert arrival rate (λ) and alert service rate (μ) for 

each priority level and traffic load are summarized in Table 5. 

 The base case for traffic load was created from assumptions about what would 

constitute reasonable arrival and service times for various types of alerts.  Priority one 

alerts should be relatively rare events, so it is assumed that a priority one alert will only 

arrive on average once per 72-hour period, yielding λ=1/72.  When they do occur, 

however, these events will require significantly more time to service since they pose a 

major risk to network operations and likely stem from complex or novel traffic 

phenomena.  In this scenario their service time was set to an average of three hours, or 

μ=1/3. 

 Priority two events will occur more frequently than priority one events, but less 

than the common priority three events, so they were set to arrive about once per 12-hour 

period, or λ=1/12.  These events are assumed to take less time to service since they pose a 

lower risk to network operations and are likely simpler to analyze, so their service time 

was set at μ=1, or 1 alert per hour. 

 Finally, the common priority three alerts are generally considered low priority 

because they represent minimal risk to network operations.  Since many can be dismissed 

without careful consideration, their average service time is quite quick, and has been 

assumed here as 10 minutes, or λ=6 alerts per hour. 

 To reduce and increase the traffic load, ρ=λ/μ, the base values described above for 

alert arrivals, λ, were decreased and increased by 25%, respectively, across all priority 

levels.  As analysts were added to the system, the corresponding service capacity 
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automatically increased, so the lambda values were doubled or tripled as necessary to 

ensure the same stress was applied regardless of the number of analysts employed. 

Table 5. Summary of the model parameters used to generate each of the nine cases 
in Scenario 1. 

 

 

Scenario 1: System-Wide Analysis 

 The output under Scenario 1 conditions for average system queue size (Lq), 

average system size (L), average system queue wait time (Wq), and average system 

sojourn time (W) are displayed in Figure 8.   

Lambda Mu Rho Lambda Mu Rho Lambda Mu Rho
Pri 3 2.250 6.000 0.375 3.000 6.000 0.500 3.750 6.000 0.625
Pri 2 0.063 1.000 0.063 0.083 1.000 0.083 0.104 1.000 0.104
Pri 1 0.010 0.333 0.031 0.014 0.333 0.042 0.017 0.333 0.052

Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = 
2.323 4.956 0.469 3.097 4.956 0.625 3.872 4.956 0.781

Lambda Mu Rho Lambda Mu Rho Lambda Mu Rho
Pri 3 4.500 12.000 0.375 6.000 12.000 0.500 7.500 12.000 0.625
Pri 2 0.125 2.000 0.063 0.167 2.000 0.083 0.208 2.000 0.104
Pri 1 0.021 0.667 0.031 0.028 0.667 0.042 0.035 0.667 0.052

Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = 
4.646 9.911 0.469 6.194 9.911 0.625 7.743 9.911 0.781

Lambda Mu Rho Lambda Mu Rho Lambda Mu Rho
Pri 3 6.750 18.000 0.375 9.000 18.000 0.500 11.250 18.000 0.625
Pri 2 0.188 3.000 0.063 0.250 3.000 0.083 0.313 3.000 0.104
Pri 1 0.031 1.000 0.031 0.042 1.000 0.042 0.052 1.000 0.052

Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = 
6.969 14.867 0.469 9.292 14.867 0.625 11.615 14.867 0.781
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Figure 8.  System response in terms of Wq, Lq, W, and L with an increasing 
number of analysts under three different traffic loads. 
 

 Average system queue wait time (Wq) and average system sojourn time (W) 

decrease with an increasing number of analysts, across all traffic loads.  The steepest 

gains in performance were seen at the heaviest tested traffic condition (ρ=.781), with a 

43% decrease in Wq (from 116.1 to 49.8 minutes) moving from one (1) to two (2) 

analysts and a 53% decrease in Wq (from 49.8 minutes to 26.8) when moving from two 

(2) to three (3) analysts. 
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 Interestingly, Lq and L were relatively unaffected by the number of analysts 

in the system, instead tracking primarily with increasing traffic load.  The sensitivity 

to traffic load might be expected since an increase in alert arrivals at the same servicing 

capacity results in more total alerts in the system at a given moment.  Lq and L do 

decrease slightly with the number of analysts, and Lq appears to be more sensitive to the 

number of analysts than L.  At ρ=.469, moving from one (1) to three (3) analysts 

decreased Lq by 74% (1.15 to .30 alerts), while L remained relatively stable at about 1.7 

alerts.  It should be noted that the sensitivity of Lq to the number of analysts decreased 

with increasing traffic load.  At ρ=.781, Lq decreased by just 30% moving from one (1) 

to three (3) analysts (7.4 to 5.2 alerts), with L again experiencing very little movement, 

changing from 8.2 to just 7.5 alerts. 

 For the system as a whole, using a single analyst introduces a bottleneck 

which drives up all four response variables Wq, W, Lq, and L.  Performance 

improvements from the employment of additional analysts stem from the creation of 

alternative paths through the system which alleviate bottleneck conditions.  For instance, 

under the tested parameters, a single priority 1 alert takes an average of 3 hours to 

service.  Therefore, in a single analyst system, when one of these alerts arrives, all other 

items in or entering the queue experience delays.  The addition of more analysts provides 

alternative paths through the system for other alerts in the queue. It is unlikely that all 

analysts will be working priority 1 alerts at the same time due to their infrequent arrival 

rate.  
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Scenario 1: Analysis by Priority Level 

 In this section, the same four response variables (Wq, W, Lq, and L) are 

discussed, but this time broken up by priority level to compare them to the system-wide 

responses discussed above. 

 Figure 9 shows the response variables for Priority 3 alerts, which can be seen to 

track very closely to the system-wide results.  The reason for this is the frequent arrival 

rate and short service times of Priority 3 alerts, which makes them a frequent occurrence 

in the system.  Their sheer frequency skews the system-wide results in their favor. 
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Figure 9. The four response variables (Wq, W, Lq, and L) for Priority 3 (low) alerts 
under Scenario 1 conditions.  They track very closely to the system-wide results. 
 

 The situation is drastically different, however, when looking at the response of 

Priority 2 and Priority 1 alerts, shown in Figure 10 and Figure 11.  The characteristic 

responses of Priority 1 alerts will be discussed specifically, but the same conclusions can 

be extended to Priority 2 results as well, since they demonstrate similar trends. 
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Figure 10.  The four response variables (Wq, W, Lq, and L) for Priority 2 (mid) 
alerts under Scenario 1 conditions.   
 

 First, when looking at the average queue wait time for Priority 1 alerts, Wq_1, it 

is clear that Priority 1 alerts experience significantly reduced wait times compared to the 

system average.  At ρ=.781 with one (1) analyst, Priority 1 alerts must only wait on 

average 21 minutes in the queue, compared to 116 minutes for the system.  For the three 

(3) analyst case, Wq_1 drops to just 3 minutes, compared to nearly 27 minutes for the 

system.  This stems from the rarity of Priority 1 alerts.  The number of them expected to 

be in the queue, Lq_1, is extremely low (<<1) regardless of the number of analysts or 
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traffic load.  The net result is that, with multiple analysts, Priority 1 alerts will almost 

always be the very first item in the queue upon arrival, and must only wait for an analyst 

to finish their current alert before being pulled from the queue and receiving service. 

 

Figure 11.  The four response variables (Wq, W, Lq, and L) for Priority 1 (high) 
alerts under Scenario 1 conditions.   
 

 As with Lq_1, L_1 is almost zero due to the infrequent occurrence of Priority 1 

alerts, though it does increase slightly for an increasing number of analysts and increasing 

traffic load.  This is simply due to the increased number of arrivals and increased 

probability that an analyst may be working a Priority 1 alert. 
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 Interestingly, the average Priority 1 sojourn time, W_1, is nearly independent of 

both traffic load and number of analysts.  This is driven by the short queue wait time for 

Priority 1 alerts, which means their time spent in the system is determined almost entirely 

by their average service time of 180 minutes.  

Scenario 2: Varying the Number of Priority Levels 

 In the second scenario the focus was on determining how the alert priority scheme 

affected the response variables, both at the system level and by individual priority levels.  

Like Scenario 1, each response variable in Scenario 2 was examined under three different 

traffic loads, ρ=.469, .625, and .781.   

 The 3-analyst case with 3 priority levels from Scenario 1 was taken as the base 

case for Scenario 2.  Three analysts were used due to their demonstrated performance 

advantages in Scenario 1.  Then, the base case was transposed into similar 1-priority and 

5-priority cases. 

 Care had to be taken when forming the 1-priority level case.  To give the illusion 

of a single priority level while maintaining a distribution of arrival rates and service times 

on par with those from Scenario 1, there had to be alerts with different properties (i.e. 

different arrival rates and service times) but they had to enter the queue without priority.  

This had to be done by tweaking the model code slightly.  The tweaked model allowed 

for the definition of multiple “priorities”, called Types in Table 6, with their own λ and μ 

values, but handled every Type of alert the same.  In other words, all alerts had to start 

their journey through the system from the back of the queue.   
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 Creating the 5-priority case was more straightforward.  The arrival and service 

rates of the priority 1, 2, and 3 alerts from the 3-priority case were given to priority levels 

1, 3, and 5 in the 5-priority case, respectively.  Then, level 2 was given a new value for μ 

to fall between the values for levels 1 and 3.  Level 4 was handled similarly.  The arrival 

rates, λ, for all priority levels were adjusted as needed to ensure the appropriate overall 

system traffic densities were maintained. 

 A summary of Scenario 2 parameters is shown in Table 6. 

Table 6.  Summary of the model parameters used to generate each of the nine cases 
in Scenario 2. 

 

  

Scenario 2: System-Wide Analysis 

 The system-wide results for each of the response variables are shown in Figure 

12, for varying traffic load and numbers of priority levels. 

Lambda Mu Rho Lambda Mu Rho Lambda Mu Rho
Type 3 6.750 18.000 0.375 9.000 18.000 0.500 11.250 18.000 0.625
Type 2 0.188 3.000 0.063 0.250 3.000 0.083 0.313 3.000 0.104
Type 1 0.031 1.000 0.031 0.042 1.000 0.042 0.052 1.000 0.052

Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = 
6.969 14.867 0.469 9.292 14.867 0.625 11.615 14.867 0.781

Lambda Mu Rho Lambda Mu Rho Lambda Mu Rho
Pri 3 6.750 18.000 0.375 9.000 18.000 0.500 11.250 18.000 0.625
Pri 2 0.188 3.000 0.063 0.250 3.000 0.083 0.313 3.000 0.104
Pri 1 0.031 1.000 0.031 0.042 1.000 0.042 0.052 1.000 0.052

Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = 
6.969 14.867 0.469 9.292 14.867 0.625 11.615 14.867 0.781

Lambda Mu Rho Lambda Mu Rho Lambda Mu Rho
Pri 5 6.075 18.000 0.338 8.100 18.000 0.450 10.125 18.000 0.563
Pri 4 0.750 12.000 0.063 1.000 12.000 0.083 1.250 12.000 0.104
Pri 3 0.075 3.000 0.025 0.100 3.000 0.033 0.125 3.000 0.042
Pri 2 0.050 2.000 0.025 0.067 2.000 0.034 0.084 2.000 0.042
Pri 1 0.019 1.000 0.019 0.025 1.000 0.025 0.031 1.000 0.031

Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = Sys Arrivals/Hr = Avg Serviced/Hr = Sys-wide Rho = 
6.969 14.867 0.469 9.292 14.867 0.625 11.615 14.867 0.781
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Figure 12.  The system-wide response variables for the nine cases in Scenario 2. 
 

 When viewed from a system perspective, it would appear that the number of 

priority levels has no effect on Wq. W, Lq, or L.  The response variable values remain 

constant as the number of priority levels changes.  The only variation seen is with respect 

to traffic load, increasing non-linearly as traffic load increases. 

 While at first it may seem strange, this result makes sense if one remembers that 

only system-wide performance is being shown.  The priority scheme is really just an 

internal feature of the system that allows some types of alerts to spend less time in the 

queue than others (we hope), but it does not affect the performance of the system as a 



 

47 

whole.  The next section, however, reveals that the situation “under the hood” is more 

complex than what the system-wide results depict. 

 

Scenario 2: Analysis by Priority Level 

  The changes in the response variables by traffic load and individual priority 

levels are shown in Figure 13 for the 3-priority case and Figure 14 for the 5-priority case. 

 

Figure 13.  Response variables for the 3-priority case, broken out by individual 
priority level across three traffic conditions. 
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Figure 14.  Response variables for the 5-priority case, broken out by individual 
priority level across three traffic conditions. 
 

 It is clear that in both the 3- and 5-priority cases, the lowest priority alerts (either 

level 3 or 5) suffer the most in terms of queue wait times, their numbers in the queue, and 

the total number in the system.  This is expected, since the lowest levels must wait for the 

higher priorities to leave the system before they can be serviced.  More interestingly, the 

queue wait times for the lowest level alerts are not appreciably impacted regardless of 
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whether there are 2 or 4 levels of higher priority alerts above them.  In both the 3- and 5-

priority cases, Wq for levels 3 and 5 was about 28 minutes at ρ=.781. 

 But what about the high priority alerts?  Does refining the shred out of priority 

levels push the highest priority alerts through the system any faster?  The modeling 

results from Scenario 2 suggest the answer is no.  The queue wait time for a level-1 alert 

under the 3-priority case, at ρ=.781, is right at 3 minutes.  This wait time only decreases 

to 2.86 minutes under the 5-priority case.  In fact, with ρ=.625, the queue wait time for a 

level-1 alert actually increases from 1.68 to 1.87 minutes.  The explanation for this 

phenomenon has to do with the way the priory schemes were designed.  The addition of 

more priority levels also introduced intermediate service times.  Whereas with the 3-

priority case most alerts were analyzed in an average of 10 minutes and a very small 

amount took 1 or 3 hours on average to service, the 5 priority case introduced a new 15 

minute service time (μ=4) and a 1.5-hour service time (μ=2/3), so a greater percentage of 

all alert arrivals took, on average, more time to be serviced.  This means when a level-1 

alert arrived into the queue, even though it went straight to the front, it could expect to 

wait slightly longer in the queue since there were greater odds that the alert being 

serviced was not a level 5, but rather some slightly higher level with a higher service time 

than 10 minutes. 

 Regarding average system sojourn time, W, it can be shown that as the number of 

priority levels increases, the highest priority levels are able to come progressively closer 

to attaining their lower limit on system sojourn time, which is equal to their average 

service time, 1/μ.  This is due to their decreased time spent waiting in the queue, so their 
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total time in the system is limited only by their service time.  As an example, at ρ=.781 

and with 3 priority levels, the average sojourn time for a level-3 alert is 37.6 minutes, 

whereas the average service time is 10 minutes, 3.76 times longer.  Under the same 

conditions, a level-1 alert has a sojourn time of 185.4 minutes, whereas the average 

service time is 180 minutes, a very minor difference. 

 Finally, the flat, blue planes in Figure 12 and Figure 13 for Wq, Lq, and L all 

represent the fact that there are very minor differences between the performances of 

priority levels 1 and 2 in the 3-priority case and levels 1-4 in the 5-priority case.  Unless 

sufficient justification can be offered as to why a finer priority shred out is warranted, the 

practical benefits of prioritization (i.e. near zero queue wait times for the most 

important alerts) can be realized with a simple 3-priority scheme. 

Summary 

 In this section, two scenarios were utilized to shed light on how network 

operations centers can make decisions about the key alert management variables under 

their control: the number of network analysts employed and the alert prioritization 

scheme used. 

 A single network analyst dramatically increases the potential for a system 

bottleneck, which can drive queue size and wait times up to unacceptable levels, 

potentially putting the network at risk.  The addition of even one analyst provides an 

alternate route around the bottleneck, allowing for alerts of all priorities to reach an 

analysts screen in a short enough time frame to remain relevant. 
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 Priority levels can ensure the most important or dangerous alerts reach an analysts 

screen quickly, but at the cost of increasing the amount of time the lowest level priority 

must wait in the queue.  Too many priority levels may do little to add value to the alert 

management process, as the performance difference between the n-th priority level and n-

1 are minimal and become even less relevant the larger n becomes. 

 Network operation centers should look at the tradeoffs between the number of 

analysts employed and the priority scheme utilized to make decisions that are suitable for 

their specific network environment.
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V.  Conclusions and Recommendations 

Summary of Research  

 The core investigative question proposed in Chapter 1 was, given varying 

amounts of traffic density, how does the queuing system performance respond to varying 

numbers of analysts and priority levels?  From this question and the analysis conducted in 

Chapter 4, several conclusions can be drawn. 

 First, even at the same traffic density, increasing the number of analysts decreases 

queue wait times and system sojourn time at the system level and across all individual 

priority levels.  On the contrary, at a given traffic density, queue size and system size are 

largely independent of the number of analysts employed across all priority levels. 

 The significant performance gains from the use of any number of analysts greater 

than one is due to the reduced potential for system bottlenecks to occur, as more analysts 

mean alternative paths through the system when an analysts is occupied an alert requiring 

a long service time. 

 When the number of priority levels varies, it was found they have no effect on the 

system-wide performance metrics.  Additionally, when the number of priority levels was 

increased above 3, the lowest-priority alerts were still shown to perform similarly to the 

system as a whole, while the additional shred out of higher priority alerts did little to push 

them through the system faster. 

 It was determined that the practical benefits of prioritization can be realized with 

a simple 3-priority scheme. 
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Study Limitations 

 Queuing Theory is useful for looking at stable, ongoing processes where tasks or 

customers arrive and are serviced at a given rate.  In this research, the use of a human 

analyst as a server introduces some amount of uncertainty.  Human analysts will not work 

continually like machines nor go straight from one customer to another like a grocery 

store cashier.  They will take breaks and likely have other official duties that pull them 

away from their desks for some amount of time.  Some leeway was added to account for 

this in the scenario assumptions about service times.  Still, it should be acknowledged 

that the process of analyzing IDS alerts will have more variance than, say, people waiting 

in line for an amusement park ride or IP packets queuing up at a network router. 

 The assumptions regarding alert inter-arrival times were estimations based on the 

author’s own experiences.  No network data was collected.  Data about alert generation 

rates from a live network would add more realism to the model.  Fortunately, were this 

data to become available it would very simple to plug the derived parameters for λ into 

the model and run a new scenario.  Even if the packets were to shown to arrive following 

some distribution other than exponential, it would just be a matter of changing one line of 

code to implement a new arrival distribution. 

Recommendations for Action 

 If the DoD is serious about Active Cyber Defense - the implementation and 

continuous improvement of live network monitoring technologies is essential.  Any 

network operations center using IDS devices should carefully consider how to manage 

alert flow based on its specific operating environment.  Queuing models offer an 
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excellent approach to characterize alert flow and make decisions about IDS configuration 

(such as alert priority levels) and analyst tasking. 

Recommendations for Future Research 

 There are numerous avenues where future research could be conducted. 

Implement FCFS with Preemptive Priority Resume Service Discipline 

 The service discipline that would be most realistic for the alert queuing system 

would be First-Come First-Served with Preemptive Priority Resume.  In this service 

discipline, alerts are serviced in order of priority first, and then arrival time.  However, if 

an alert enters the queue of a higher priority than one currently being serviced by an 

analyst, the lower priority alert is paused, set-aside, and the analyst immediately begins 

working the higher priority alert.  When the higher priority alert is complete, the analyst 

will first check to ensure no other alerts of higher priority than the paused job are in the 

queue, and then continue working the lower priority job. 

 This service discipline has complexities that are amplified as priority levels are 

added to the model.  For instance, when a lower priority alert is paused, one must 

consider whether that alert should stay with the same analyst, but in a paused state, or go 

back into the queue for re-assignment at a later time.  Also, as priority levels are added, 

the probability that lower priority jobs will be preempted rises, so the model must 

account for and track an increasing number of paused alerts. 

Explore the Effects of Alert Aggregation 

 A technique exists to deal with the issue of alert flooding from IDS devices called 

alert aggregation.  This technique recognizes that many alerts generated share the same 
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root-cause.  For example, an alert may be in place to flag packets that travel over a rarely 

used port.  In the event a hundred packets travel over that port, it could result in a 

hundred different alerts being generated, but with only on root cause that requires 

attention.  The effects of alert aggregation could reduce the number of analysts required 

to monitor traffic, but with a possible loss in information (Saad & Traore, 2011). 

Estimate Analyst Service Time using Bank Teller Data 

 The task of a network analyst examining an IDS alert may not be so different 

from that of a bank teller servicing customers.  In both cases a human is performing tasks 

from a queue that result in variable services times.  For the bank teller, some customers 

will require straight forward services (a quick deposit or cashing a check) while others 

will have questions or other non-routine issues that the teller must address.  The analyst 

will experience a similar scenario as some alerts appear often enough to be deemed 

routine (but may still may have security value) while others require deeper investigation.  

Perhaps the biggest difference between the two is the bank teller scenario involves a 

human on both sides of the service interaction, whereas the analyst only one.  Cogdill and 

Monticino, from University of North Texas, performed interesting analysis on data 

acquired from several branches of a regional bank chain regarding teller service times.  

They found the empirical data to more closely fit a log-normal distribution than an 

exponential (Cogdill & Monticino, 2007). 

Collect Empirical IDS Data from Live Networks 

 The use of the exponential distribution to model alert inter-arrival times and 

service times in this paper is not based on actual network data.  If the model were to be 

used to make decisions concerning a real world network operations center, it would be 
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prudent to gather long-term data about actual alert inter-arrival times, which would likely 

vary based on time of day, day of the week, and so on.  The same type of data should be 

collected about analyst service times.  From the gathered empirical data, it would be 

possible to develop a distribution that more closely approaches the real world situation.  

Then, the model could be modified to allow different distributions for say, night or 

weekend or holiday operations, which may require differing numbers of analysts or even 

dictate the use of a different alert prioritization scheme. 

Significance of Research 

As the DoD network defense posture migrates from a passive filter approach to 

one of active, real-time counter-measures, the role of the network “operations center” 

must live up to its name and evolve beyond that of IT equipment manager.  To do so, new 

operating concepts and analytical tools must be researched and applied.  The application 

of Queuing Theory to the management of Intrusion Detection Systems (IDS) offers a 

powerful tool for the use of DoD network administrators in implementing an effective 

active cyber defense capability.  It can be used to offer insight into efficient resourcing 

plans and help administrators develop effective device configurations.  Though a small 

part of a comprehensive active cyber defense architecture, a well-honed IDS operated by 

proficient analysts (an end to which this research suggests a means) forms the foundation 

for implementing more advanced defense measures. 
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Appendix A 

MATLAB Model Code 

 Below is the MATLAB code for the multi-server, multi-priority, first-come first-

served queuing theory model used in this research.  The code is divided into four parts: 

the “main” script which orchestrates the model, an Alert class, a Queue class, and an 

Analyst class.  The Alert and Queue classes were modified from code written by Dimitri 

Shvorob (dimitri.shvorob@gmail.com), two whom all credit for the “queuing” 

functionality of the model should be given.  Comments that appear in the coding of these 

classes are additions by the author.  The Analyst class and main script are entirely the 

author’s own work. 

 This is very much raw, working code.  The author has attempted to clean it up for 

presentation and re-use, but there may be some lingering variables or class properties 

from “experimentation” during coding which have not been removed. 

 

The “Main” Script (MMcFCFSwithPriority.m) 

 This is the main orchestrating function of the model.  Here, the user can set the 

parameters for the simulation.  This code will create instances from the Alert, Queue, and 

Analyst classes to orchestrate a full model.  The reader may notice that the code generates 

a Queue object for every priority level.  This does not mean the model uses multiple 

queues, but rather that each priority level is broken out into its own “virtual” queue to 

facilitate easier handling from a coding perspective.  For example, the “real” queue may 

look like this, 
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5, 5, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1 

But the model breaks this single queue into five virtual queues that look like this, 

5, 5 

4 

3, 3, 3 

2, 2 

1, 1, 1, 1, 1 

The net effect on model performance is the same, since alerts are still served in the same 

order based on priority. 

 Also of note, the code classifies alert priorities backwards from what is presented 

in this paper.  For instance, if there are k=5 priority levels, a priority level of 5 is 

considered the highest priority and 1 the lowest.  This convention is unfortunately a bit 

confusing, but could not be altered without significant re-writing of the code. 

 Finally, the code variables “lambda” and “mu” are really the values for 1/λ and 

1/μ.  So an alert with arrival rate λ=4 (4 alerts per hour) has a code “lambda” value of 1/4 

(1 hour per 4 alert arrivals, or 15 minutes between alerts). 

clear 
clc 
  
%%%% THESE ARE THE EDITABLE VARIABLES  %%%%%%%%%%%%%%%%  
  
%set length of simulation, in # of alert arrivals 
sim_length = 100000; 
  
%set number of analysts 
num_analysts = 3; 
  
%set number of priority levels 
k = 3; 
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% set arrival time parameters (must have a lambda value for each Alert 
% priority level, lowest to highest, in a row vector [x, y, z...]) 
lambda = [1/4, 12, 72]; 
  
% set service time parameter (must have a mu value for each Alert 
% priority level, lowest to highest, in a row vector [x, y, z...]) 
mu = [1/6, 1, 3];       
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% create a Queue of type Alert for each priority level 
q = cell(1 , k); 
for i = 1:k 
    q{1, i} = Queue('Alert'); 
end 
  
% create Analyst(s) at simulation start 
a(1, num_analysts) = Analyst(); 
  
  
%setup the Alert arrival times for each priority level 
arrival_times = zeros(sim_length, k); 
avg_arrival_time = zeros(1, k); 
cumulative_arrival_times = zeros(sim_length, k); 
for i = 1:k 
    arrival_times(:, i) = round(60 * exprnd(lambda(1, i), 1, 
sim_length)); 
    avg_arrival_time(1, i) = mean(arrival_times(:, i)); 
    cumulative_arrival_times(:, i) = cumsum(arrival_times(:, i)); 
end 
  
%make sure first arrival time for all priorities is not "zero" 
for i = 1:k 
    if cumulative_arrival_times(1,i) == 0; 
        cumulative_arrival_times(1,i) = 1; 
    end 
end 
  
%setup the service time array 
service_times = zeros(sim_length, k);      
avg_service_time = zeros(1, k); 
for i = 1:k 
    service_times(:, i) = round(60 * exprnd(mu(1, i), 1, sim_length)); 
    avg_service_time(1, i) = mean(service_times(:, i)); 
end 
  
%create element counters for arrival and service time arrays, to track 
when 
%each element has been used 
cumulative_arrival_element_counter(1, :) = ones(1, k); 
service_times_element_counter(1, :) = ones(1, k); 
  
%determine the last "minute" in simulation time, will stop 
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%1 time step less than longest cumulative arrival array to prevent an 
indice 
%overrun problem in the main "for" loop 
end_of_sim_time = min(cumulative_arrival_times(sim_length, :))-1 ; 
  
%preallocate an array to store the queue size & system size at each 
time step 
q_sizes = zeros(end_of_sim_time, k); 
sys_sizes = zeros(end_of_sim_time, k); 
  
%preallocate arrays to store the queue & system wait times, each time 
an alert is 
%polled from the queue or finished 
q_wait_times = zeros(sim_length, k); 
sys_wait_times = zeros(sim_length, k); 
  
%create counter variables to track which element the queue and system 
%times should be placed in 
q_wait_counter(1, :) = ones(1, k); 
sys_wait_counter(1, :) = ones(1, k); 
  
%This is the "guts" of the model, where alerts enter the queue, are 
%assigned a server, and all data about queue lengths and wait times are 
%tracked  
for sim_time = 1:end_of_sim_time 
     
    %check for alert arrivals 
    %   if true, place them in the queue -- otherwise don't do anything 
    %   (this has to be a while loop because sometimes the arrival time 
is "0" 
    %    and therefore two alerts arrive at the same moment in sim 
time) 
    for j = k:-1:1 
        while 
cumulative_arrival_times(cumulative_arrival_element_counter(1, j), j) 
== sim_time 
            q{1, j}.offer(Alert(j, sim_time)); 
            cumulative_arrival_element_counter(1, j) = 
cumulative_arrival_element_counter(1, j) + 1; 
        end 
    end 
     
     
    %check to see if any Analyst has finished working 
    %if true, 
    %   calc amount of time alert was in system, clear the alert & make 
the analyst available 
    for i = 1:num_analysts 
        if (a(1, i).get_available ~= 1) &&  (a(1, 
i).alert.time_finished == sim_time) 
            sys_wait_times(sys_wait_counter(1, a(1, i).alert.priority), 
a(1, i).alert.priority) = sim_time - a(1, i).alert.time_arrived; 
            sys_wait_counter(1, a(1, i).alert.priority) = 
sys_wait_counter(1, a(1, i).alert.priority) + 1; 
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            a(1, i) = a(1, i).clear_alert; 
             
            a(1, i) = a(1, i).make_available; 
        end 
    end 
     
    %check to see that an Analyst is available & that Queue is not 
empty 
    %if true,  
    %   give Analyst next Alert in the queue & save the time it was 
polled 
    %   make the Analyst busy 
    %   store when the Alert will be finished 
    for i = 1:num_analysts 
        for j = k:-1:1 
            while a(1, i).get_available == 1 && q{1, j}.isempty ~= 1 
                a(1, i) = a(1, i).assign_alert(q{1, j}.poll, sim_time); 
                 
                q_wait_times(q_wait_counter(1, j), j) = a(1, 
i).alert.time_polled - a(1, i).alert.time_arrived; 
                q_wait_counter(1, j) = q_wait_counter(1, j) + 1; 
  
                a(1, i) = a(1, i).make_busy; 
                 
                a(1, i).alert.time_finished = sim_time + 
service_times(service_times_element_counter(1, j), j); 
                service_times_element_counter(1, j) = 
service_times_element_counter(1, j) + 1; 
                 
                %check to see if any Analyst has finished working 
                %if true, 
                %   calc amount of time alert was in system, clear the 
alert & make the analyst available 
                if (a(1, i).get_available ~= 1) &&  (a(1, 
i).alert.time_finished == sim_time) 
                    sys_wait_times(sys_wait_counter(1, a(1, 
i).alert.priority), a(1, i).alert.priority) = sim_time - a(1, 
i).alert.time_arrived; 
                    sys_wait_counter(1, a(1, i).alert.priority) = 
sys_wait_counter(1, a(1, i).alert.priority) + 1; 
  
                    a(1, i) = a(1, i).clear_alert; 
  
                    a(1, i) = a(1, i).make_available; 
                end 
            end 
        end 
    end 
     
     
    %store the queue size at current simulation time 
    for j = k:-1:1 
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       q_sizes(sim_time, j) = q{1, j}.size; 
    end 
     
    %store the system size at current simulation time 
    alerts_in_service = zeros(1, k); 
    for j = k:-1:1 
        for i = 1:num_analysts 
            if (a(1, i).get_available ~= 1) && (a(1, i).alert.priority 
== j) 
                alerts_in_service(1, j) = alerts_in_service(1, j) + 1; 
            end             
        end 
        sys_sizes(sim_time, j) = q{1, j}.size + alerts_in_service(1, 
j); 
    end 
end 
  
%Calculate system-wide Lq, L, Wq, and W 
  
Lq = zeros(1, k); 
for j = k:-1:1 
    Lq(1, j) = mean(q_sizes(:, j)); 
end 
Lq_overall = sum(Lq) 
  
L = zeros(1, k); 
for j = k:-1:1 
    L(1, j) = mean(sys_sizes(:, j));  
end 
L_overall = sum(L) 
  
Wq = zeros(1, k); 
for j = k:-1:1 
    Wq(1, j) = mean(q_wait_times(1:q_wait_counter(1, j), j)); 
end 
weighted_sum = 0; 
for j = k:-1:1 
    weighted_sum = weighted_sum + Wq(1, j)*q_wait_counter(1, j); 
end 
Wq_overall = weighted_sum / sum(q_wait_counter(:,:)) 
  
W = zeros(1, k); 
for j = k:-1:1 
    W(1, j) = mean(sys_wait_times(1:sys_wait_counter(1, j), j)); 
end 
weighted_sum = 0; 
for j = k:-1:1 
    weighted_sum = weighted_sum + W(1, j)*sys_wait_counter(1, j); 
end 
W_overall = weighted_sum / sum(sys_wait_counter(:,:)) 
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The Alert Class (Alert.m) 

 This class is used to construct Alert objects, which enter the queue and are 

serviced by analysts.  The Queue class will call on the “eq” and “gt” functions within the 

Alert class to store incoming alerts into their proper queue position. 

classdef Alert 
     
    properties %(SetAccess = private) 
        priority          %this property defines the priority (1, 2, 3, 
etc.) of the alert 
        time_arrived      %store the simulation time at which the alert 
was introduced to the queue 
        time_polled       %store the simulation time at which the alert 
was polled from the queue 
        time_finished     %store the simulation time at which the alert 
will be finished 
    end 
     
    methods 
         
        %Construction function for the Alert class 
        function[obj] = Alert(x, t) 
            obj.priority = x; 
            obj.time_arrived = t; 
            obj.time_polled = 0;             
            obj.time_finished = 0; 
        end 
         
        %returns the priority level of an alert 
        function[out] = get_priority(obj) 
            out = obj.priority; 
        end    
         
        %compares the priority level of two Alert objects to determine 
if 
        %they are equal 
        function[out] = eq(obj,obj2)  
            if length(obj2) > 1 
               throw(MException('Widget:eqMultiple','??? Cannot compare 
to multiple elements at once.')) 
            end    
            out = strcmp(class(obj),class(obj2)) && obj.priority == 
obj2.priority;   % obj2 must be of the same class 
        end 
         
        %compares the priority level of two Alert objects to determine 
if 
        %the first object is higher priority than the second object 
        function[out] = gt(obj,obj2)  
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            if length(obj2) > 1 
               throw(MException('Widget:gtMultiple','??? Cannot compare 
to multiple elements at once.')) 
            end   
            out = isa(obj2,'Alert') && obj.priority > obj2.priority;                
% obj2 must be an Alert 
        end 
         
    end 
     
end 
 

The Queue Class (Queue.m) 

 This class creates a queue for holding Alert objects until they can be passed onto 

an Analyst for service. 

classdef Queue < handle 
    
   % Queue - strongly-typed Queue collection 
   % 
   % Properties: 
   % 
   %   Type (string) 
   % 
   % Methods: 
   % 
   %   Queue(type) 
   %   display 
   %   size 
   %   isempty 
   %   clear 
   %   contains(obj) 
   %   offer(obj) 
   %   remove(obj) 
   %   peek   - returns [] if queue is empty 
   %   poll   - returns [] if queue is empty 
   %   values - returns contents in a cell array 
   % 
   % Notes: 
   % 
   % Compatible classes must overload eq() for object-to-object 
comparisons. 
   % 
   % Author: dimitri.shvorob@gmail.com, 3/15/09  
    
   properties (GetAccess = protected, SetAccess = protected, Hidden = 
true) 
       Elements   %Elements are the "cells" that hold the queued 
objects 
   end 
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   properties (SetAccess = protected) 
       Type    %stores the type of object the queue will be storing; 
cannot 
               %mix different type objects into a single queue 
   end 
          
   methods  
        
       %Queue constructor function 
       function[obj] = Queue(type) 
           if ~ischar(type) 
              throw(MException('Queue:constructorInvalidType','??? 
''type'' must be a valid class name.')) 
           end    
           obj.Elements = {}; 
           obj.Type = type; 
       end 
        
       %function to view the current state of the queue 
       function disp(obj) 
           disp([class(obj) '<' obj.Type '> (head on top)']) 
           if ~obj.isempty 
              for i = 1:obj.size 
                  disp(obj.Elements{i}) 
              end    
           else 
              disp(['empty']) 
           end 
       end 
        
       %output the current size (or length) of the queue 
       function[out] = size(obj) 
           out = length(obj.Elements); 
       end 
        
       %I had to modify the "values" function because sometimes it 
output a 
       %row vector and sometimes a column vector, which was 
troublesome. 
       %Now it always outputs a column vector. 
       function[out] = values(obj) 
           dummy = cell(obj.size, 1); 
           for i = 1:obj.size 
               dummy{i,1} = obj.Elements{i};                
           end            
           out = dummy; 
       end 
        
       %Checks to see if the queue is empty; 1 = yes, 0 = no 
       function[out] = isempty(obj) 
           out = obj.size == 0; 
       end 
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       %clears an object from a particular element in the queue 
       function[obj] = clear(obj) 
           obj.Elements = {}; 
       end 
        
       %Checks to see if a particular element contains a particular 
object 
       %- NOT USED IN THE QUEUING THEORY MODEL...but could be useful 
       function[out] = contains(obj,e) 
           out = false; 
           for i = 1:obj.size 
               if e == obj.Elements{i} 
                  out = true; 
                  break 
               end 
           end            
       end 
        
       %Places an object into the queue 
       function[obj] = offer(obj,e) 
           if length(e) > 1 
              throw(MException('Queue:offerMultiple','??? Cannot offer 
multiple elements at once.')) 
           end    
           if ~isa(e,obj.Type) 
              throw(MException('Queue:offerInvalidType','??? Invalid 
type.')) 
           end 
           if isempty(obj.Elements) 
              obj.Elements = {e}; 
           else 
              obj.Elements{end+1} = e; 
           end 
       end    
        
       %Removes an object from the queue 
       function[obj] = remove(obj,e) 
           if length(e) > 1 
              throw(MException('Queue:removeMultiple','??? Cannot 
remove multiple elements at once.')) 
           end  
           if ~isa(e,obj.Type) 
              throw(MException('Queue:removeInvalidType','??? Invalid 
type.')) 
           end 
           if ~isempty(obj.Elements) 
              k = []; 
              for i = 1:obj.size 
                  if e == obj.Elements{i} 
                     k = [k i];  %#ok 
                  end 
              end 
              if ~isempty(k) 
                  obj.Elements(k) = []; 
              end 
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           end 
       end 
        
       %Shows what the next item in the queue is, but leaves it in 
place 
       function[out] = peek(obj) 
           if ~obj.isempty 
               out = obj.Elements{1}; 
           else 
               out = []; 
           end     
       end 
        
       %Pulls the next item from the queue, and removes it from the 
queue 
       function[out] = poll(obj) 
           if ~obj.isempty 
               out = obj.Elements{1}; 
               obj.Elements(1) = []; 
           else 
               out = []; 
           end     
       end 
            
   end    
     
end 
 

The Analyst Class (Analyst.m) 

 This class enables the creation of Analyst objects, which can take alerts that are 

pulled from the queue and service them. 

% Class to serve as analysts 
classdef Analyst 
     
    properties 
        available  %1 = available, 0 = busy 
        alert      %holds the alert object the analyst is currently 
servicing 
    end 
     
    methods 
         
        %Construction function for the Analyst class 
        function[obj] = Analyst() 
            obj.available = 1; 
            obj.alert = {}; 
        end 
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        %determine if Analyst is currently servicing an Alert 
        function[out] = get_available(obj) 
            out = obj.available; 
        end 
         
        %assigns an alert to an analyst 
        function[obj] = assign_alert(obj, e, t) 
            obj.alert = e; 
            obj.alert.time_polled = t;  %store the time the alert was 
given 
                                        %to the analyst 
        end                                
         
         
        %removes Alerts when the analyst finishes working on them 
        function[obj] = clear_alert(obj) 
            obj.alert = {}; 
        end         
         
        %changes an Analysts Available property to "busy" when the 
        %Analyst is assigned an alert 
        function[obj] = make_busy(obj) 
            obj.available = 0; 
        end 
         
        %changes an Analysts "Available" property to "available" when 
the 
        %Analyst completes an Alert 
        function[obj] = make_available(obj) 
            obj.available = 1; 
        end 
         
        %returns the priority of the current Alert the Analyst is 
working 
        function[out] = get_alert_priority(obj) 
            out = obj.alert.priority; 
        end 
                 
    end 
     
end 
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